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We investigate the presence of an acoustic-quasi-elastic interaction contribution in the IXS spectra of liquid water at
301K using inelastic x-ray scattering with sub-meV energy resolution at momentum transfers 0.77 ≦ Q ≦ 4.20 nm−1.
The contribution appears due to the overlap the acoustic mode with the tail the quasi-elastic mode and is fully consistent
with hydrodynamic theory. Incorporating this interaction allows us to describe the dynamic structure factor, SðQ;!Þ,
without introducing an extra mode, and may help explain earlier contradictory interpretations. The sound velocity, and
relative intensity of the quasi-elastic and acoustic mode, plateau for Q > 2nm−1 at values consistent with a viscoelastic
generalization of the Landau–Placzek relation.

The dynamics of liquids on nm length scales is a
fascinating subject for which consensus is still evolving. At
long wavelengths, equilibrium liquids are often described by
a linearized Navier–Stokes equation (see, e.g., Ref. 1) giving
a Rayleigh–Brillouin triplet for the dynamic structure factor,
SðQ;!Þ, with a quasi-elastic (Rayleigh) mode at zero energy
transfer bracketed between the Stokes and anti-Stokes peaks
of the acoustic (Brillouin) mode. As the probed length scale
shortens into the regime accessible by inelastic neutron or
x-ray scattering (INS or IXS), approximately Q > 0:5 nm−1,
one often still observes three peaks in SðQ;!Þ, but liquid
spectra can blur out, with the acoustic mode width increasing
so it sometimes appears as a rather broad feature on the tail of
a quasi-elastic peak (Refs. 1–3 and references therein).
Further, there is a rich panoply of effects (different types of
relaxation, fast sound=positive dispersion, onset of observ-
able transverse dynamics) that potentially impact the behav-
ior at ∼nm length scales. Thus, the meso-scale region of
momentum space, where the crossover from continuum to
atomistic dynamics occurs in liquids, is both interesting, and
challenging.

Interpretations of experimental work on liquid water
demonstrate some of these complexities. In particular,
measurements of SðQ;!Þ at ∼nm−1 momentum transfers
have been carried out by INS and IXS (including4–14)). All
the measurements show a large quasi-elastic central peak
bracketed by the Stokes and anti-Stokes peaks of a dispersing
acoustic mode— a triplet as described above— and the data
appears broadly similar across different work. Common
features of that work include (1) a quasi-elastic peak that
is much bigger than the acoustic mode peaks and (2) the
presence of what has been called “fast sound”, or “positive
dispersion”, or “high-frequency sound”, as the acoustic mode
disperses with a velocity higher than the hydrodynamic (long
wavelength) sound velocity. The presence of fast sound is
expected from work on other materials (e.g., Ref. 15 is an
early example) and also viscoelastic theory or generalized
hydrodynamics (e.g., Refs. 1–3, and 16) but the magnitude in
water is notably large, with the fast sound velocity roughly
double the hydrodynamic value. However, beyond these
common features, interpretation of the spectra of water is
far from consistent. In particular, as data quality improved,
analysis of the data using a simple model (the sum of a

Lorentzian and a damped harmonic oscillator, the “L+DHO”
model) was augmented by a second DHO mode (an
“L+2DHO” model) for SðQ;!Þ for Q � 2{3 nm−1. This
extra mode has been suggested to be related to transverse
dynamics,7) or to an anti-crossing behavior10,12)—while both
pictures are discussed in Ref. 17. Meanwhile, analysis of
spectra using a memory function approach,9,13) found no
evidence of an additional mode for 2 � Q � 7 nm−1. Thus,
interpretations of the work on liquid water have incon-
sistencies that have not been reconciled, even over the limited
range of momentum transfers (0:77 � Q � 4:20 nm−1) that
we focus on in the present work.

In fact, the choice of the model used to fit measurements of
SðQ;!Þ is important for interpreting most liquid spectra, not
only water: acoustic lines for liquids are usually intrinsically
broad, and often overlap the quasi-elastic contribution, so that
the model choice influences the values determined for
parameters, and thus the interpretation of the spectra. While
the case of water mentioned above (with at least 3 different
interpretations, two with extra modes, 1 without) is extreme,
more generally models are used to get information from
spectra, to determine mode dispersion, and to suggest the
presence, or not, of additional modes (e.g., Refs. 18–20).

Here we demonstrate that interaction between the quasi-
elastic mode and the acoustic mode is an important
component of the IXS spectra of liquid water for 0:77 �
Q � 4:20 nm−1, and, we suggest, provides a good basis for a
common interpretation of the data in this region momentum
transfer. Taking this interaction (which appears similar to an
extra mode at an energy below the acoustic mode, but with an
intensity and position determined by the quasi-elastic and
acoustic components) into account, we find the behavior of
water at 301K in this range of momentum transfer can be
well described without introducing additional modes. We
find the cross-over from hydrodynamic to fast sound occurs
at Q < 2 nm−1 and that the ratio of the intensity of the
acoustic mode and the quasi-elastic relaxation is constant for
2 < Q � 4:2 nm−1, and consistent with a viscoelastic mod-
ification to the Landau–Placzek relation.

The L+DHO or the L+2DHO models used previously may
be interpreted in terms of independent modes: the quasi-
elastic Lorentzian term is typical of relaxation while the DHO
contribution(s) describes lifetime broadened (decaying)

Journal of the Physical Society of Japan 90, 083602 (2021)

https://doi.org/10.7566/JPSJ.90.083602

Letters

083602-1 ©2021 The Physical Society of Japan

maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

©2021 The Author(s)

This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by （公財）高輝度光科学研究センター on 07/20/21

https://doi.org/10.7566/JPSJ.90.083602
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.7566%2FJPSJ.90.083602&domain=pdf&date_stamp=2021-07-21


mode(s).21) However, naively, there could be interaction
between the quasi-elastic and acoustic modes, since the
acoustic mode overlaps the tail of the quasi-elastic contribu-
tion. One can also make an analogy to Raman scattering
where a phonon resonance overlapping a continuum (i.e.,
non-resonant, energy transfer independent) from electronic
scattering can lead to an asymmetric Fano line shape22) from
the interference of the resonant scattering, which changes
phase through the transition, and the continuum. In non-
resonant IXS, as we use here, the electronic scattering from
valence electrons is too weak to observe such interference,
however, the tail of the quasi-elastic scattering provides a
smooth background that is non-negligible compared to the
phonon intensity: one then might expect a similar asymmetric
contribution may appear on passing through the acoustic
phonon resonance.

In fact, if one returns to hydrodynamic theory [e.g., starting
from Eq. (5.3.15) of Ref. 1] the dynamic structure factor may
be written as

SðQ;!Þ ¼ SðQÞ
�

�
I0

z0
!2 þ z20

þ I1
2z1�

2

ð!2 ��2Þ2 þ 4z21!
2

þ I0z0
�2 � !2

ð!2 ��2Þ2 þ 4z21!
2

�
; ð1Þ

where ω is the energy transfer and SðQÞ is the static structure
factor [the integral of SðQ;!Þ over energy transfer]. I0; z0
are the intensity and width (half width at half maximum,
HWHM) of the central Lorentzian mode and I1; z1;� are the

intensity, width and energy of the sound mode, respectively
[normalization requires I0 þ I1 ¼ 1, and relations between
the parameters of Eqs. (1) and (5.3.15) of Ref. 1 may be
found in the Supplemental Materials23)]. The first two terms
constitute the “L+DHO” model. The last term is the
interaction of the acoustic mode with the quasi-elastic mode:
its amplitude is proportional to the area and width of the
quasi-elastic (Lorentzian) component, while its shape is
determined by the position and width of the acoustic (DHO)
mode. In hydrodynamics this contribution is effectively
included in the “asymmetry parameter”, sometimes denoted
“b” (e.g., Ref. 24). It integrates to 0, changing sign at the
acoustic mode energy, but, to a first approximation (see
Fig. 1) may appear similar to a broad extra mode at an energy
below that of the acoustic mode. We note Eq. (1) can also be
converted to the same form used to describe the rotation-
translation coupling in crystals25) as has been applied to
ferroelectric materials,26) so this type of interaction term is
general.

Notably, Eq. (1) is derived in a limit where longitudinal
and transverse dynamics are entirely separated, so, a-priori,
the interaction is not related to transverse dynamics. Further,
the amplitude and shape are entirely determined by the
quantities appearing in the Lorentzian and DHO terms, so,
when considered as a line-shape for fitting, the interacting
form, Eq. (1), has the same number of free parameters as the
L+DHO model. Thus, the fact that this expression repro-
duces water spectra well, as shown below, where the

-10 -5 0 5 10

Interacting

χ2/ν=1.09

Energy Transfer  [meV]

-10 -5 0 5 10

L+DHO

χ2/ν=1.40

Energy Transfer  [meV]

-3
0
3

Q = 1.18 nm-1

-3
0
3

-10 -5 0 5 10

Interacting

χ2/ν=0.92

Energy Transfer  [meV]

-10 -5 0 5 10

L+DHO

χ2/ν=1.56

Energy Transfer  [meV]

-3
0
3

Q = 2.54 nm-1

-3
0
3

-20 -10 0 10 20

Interacting

χ2/ν=1.15

Energy Transfer  [meV]

-20 -10 0 10 20

L+DHO

χ2/ν=2.21

Energy Transfer  [meV]

-3
0
3

Q = 4.20 nm-1

-3
0
3

Fig. 1. (Color online) Water spectra at Q ¼ 1:18, 2.54, and 4.20 nm−1 as fit either with a model including interaction (top) or without it (bottom). Insets
show the full scale. The lines show the individual components after convolution with the resolution, with the quasi-elastic contribution a dashed line, the DHO
solid, and the interaction term (top only) the thick line. The upper panels show the residuals ðydata � yfitÞ=�. The inclusion of the interaction term significantly
improves the fit quality without increasing the number of free parameters. The residuals for the L+DHO model also suggest systematic errors, showing
correlated oscillations in their deviation from 0, which are removed by using the interacting model.
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L+DHO model fits poorly, is excellent indication (Ockham’s
razor) that the interaction is real.

We investigated the dynamic structure factor of water at
301K at momentum transfers, 0:77 � Q � 4:20 nm−1, using
inelastic x-ray scattering at BL43LXU27) of the RIKEN
SPring-8 center. Runs were made with extremely good
energy resolution (down to 0.84meV, FWHM) using the
Si(13 13 13) reflection at 25.7 keV28) for 0:77 � Q < 3:2
nm−1 and using a higher flux setup with the Si(11 11 11)
reflection at 21.7 keV for 2:6 � Q � 4:2 nm−1 (resolution �
1.33meV). Specially designed analyzer masks29) allowed us
to improve count-rates while retaining good momentum
resolution. The sample was ultrapure water placed in a cell
with two 0.05mm thick polished single crystal sapphire
windows. Additional experimental details can be found in the
Supplemental Materials.23)

The impact of the interaction term can be seen in Fig. 1,
where, without increasing the number of fit parameters, there
is strong improvement in fit quality, and substantial reduction
of correlations in the residuals, relative to the L+DHO model
without interaction (see Supplemental Materials for addi-
tional information about the fitting23)). Improvement is visible
across the momentum range investigated, with, always, the
interacting model providing a better fit (see the Supplemental
Materials23)). The improvement in reduced chi-squared by
including the interaction is significant: e.g., at 2.54 nm−1, the
probability that the chi-squared per degree of freedom �2=� �
1:56 for the L+DHO model is p < 10�5 for the � ¼ 128

degrees in the spectrum ( �2=� and p are given for several
models for all measured spectra in the Supplemental
Materials23)). Of course, one can suggest that the data should
be interpreted by adding one or more additional modes to the
model: one should pass to an L+2DHO model, or something
more complicated, e.g., L+nDHO. However, while this is
possible in principle, physical considerations also play a role:
not only are the fits better in the interacting model, but that
model is directly suggested by theory. Also, as shown in the
Supplemental Materials23) even the L+2DHO, with its full
additional line, gives fits that are usually worse than the
interacting model, and in some cases significantly worse.
Better fits, using a model with fewer parameters and a
theoretical basis, is strong evidence of validity.

The Q-dependence of the fit parameters are shown in
Fig. 2. While a detailed analysis of water is beyond the scope
of the present work, we discuss several features directly
visible in the plots. The sound speed, �=Q, and the intensity
ratio, I0=I1, and, to some extent, the quasi-elastic linewidth,
z0, saturate at constant values for Q � 2 nm−1. The
magnitude of the fast or high-frequency sound, 2.91 km=s
from Fig. 2(a), is about double that of the hydrodynamic
value, 1.50 km=s at this temperature. This is reasonably
consistent with, or slightly lower than, other work— though
other work uses different fitting models. We note that the
plateau in the sound speed, intensity ratio and quasi-elastic
width suggest that if one considers the water response in the
context of a viscoelastic transition starting at small Q, then
that transition has largely completed by Q � 2 nm−1. Mean-
while, an approximately linear Q-dependence of the acoustic
mode width, z1, is possible within viscoelastic models over a
limited range of momentum transfers, though it represents an
interplay of different quantities.16)

We briefly focus on the intensity ratio, I0=I1, as, viewed
from a long-wavelength limit, this is perhaps the most
surprising characteristic of the water spectra. In particular,
light scattering measurements at Q � 0:02 nm−1 show a very
small quasi-elastic intensity, typically a few % of the acoustic
mode intensity.30,31) This is in good agreement with the
Landau–Placzek relation, I0=I1 ¼ � � 1, where � ¼ cp=c� is
the specific heat ratio: � ¼ 1:03 for water at room temperature
so one expects, and observes, I0=I1 � 0:03.30,31) In contrast,
at Q � 2 nm we observe roughly a 100-fold increase to
I0=I1 � 2:67 [the line in Fig. 2(d)]. However, this change is
consistent with a viscoelastic generalization of the Landau–
Placzek relation— something, that, to the best of our
knowledge has not previously been mentioned in the context
of spectra measured in the present range of momentum
transfer. In particular, when one is above the crossover to fast
sound, a generalization of the Landau–Placzek relation is16)

I0
I1

� �
c1
c0

� �2

� 1: ð2Þ

Taking � � 1:03 for water at room temperature near
atmospheric pressure, c0 ¼ 1:50 km=s32) and c1 ¼ 2:91ð2Þ
km=s directly from Fig. 2(a), Eq. (2) predicts I0=I1 �
2:88ð4Þ which is in acceptable agreement with the 2.67(5)
of the fit in Fig. 2(d). This suggests that the relaxation
represented by the quasi-elastic mode in the spectra may be
predominantly that responsible for the transition to the higher
sound speed.

We now revisit some of the previous work measuring
SðQ;!Þ for water in this range of momentum transfer. Very
early work using both neutrons and x-rays analyzed the data
in terms of a L+DHO model (or, sometimes, 3 Lorentzians),
however, more recent work, with better quality data
introduced a second DHO mode, passing to an L+2DHO
model, where the second mode was attributed variously to the
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Fig. 2. (Color online) Q-dependence of parameters from fits to the
interacting model— see text for discussion. The lines are constant fits to
the indicated regions, and are in good agreement with a viscoelastic
modification of the Landau–Placzek relation.
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onset of observable transverse dynamics or to the presence of
an anti-crossing.7,10,12,17) Meanwhile, more recently, some
workers have taken the interpretation in terms of a transverse
mode as being accepted (e.g., Ref. 14). We suggest that, at
least over the range of momentum transfers investigated here,
the extra mode may have been an artifact of using a non-
interacting L+DHO model as a starting point for the
description. In fact, our observed lack of any extra mode in
the investigated Q range is consistent with a memory function
approach to the analysis of water spectra where no extra
mode was observed for 2 � Q � 7 nm−1.9,13) This agreement
is not surprising given that the memory function effectively
used in that work has been shown33) to be equivalent to the
hydrodynamic line-shape. However, as has been our
experience, and noted by others, analysis using memory
functions is “usually affected by strong correlations among
fitting parameters”34) so the direct frequency domain
approach used here, and its interpretation, may offer
advantages in practical treatment of SðQ;!Þ. We also note,
that above 3.9 nm−1 we do observe a slight increase in the
quasi-elastic linewidth which may hint at a need to consider
an additional component at higher Q, and that component
might be related to transverse dynamics.

In sum, we have shown that including interaction between
the quasi-elastic mode and the acoustic mode in water
spectra, SðQ;!Þ, at momentum transfers of 0.77 to 4.20 nm−1

gives good fits to the measured data without introducing
extra modes, simplifying the interpretation of the data. The
interaction is fully consistent with hydrodynamic theory
from a linearized Navier–Stokes equation.1) We suggest that
Eq. (1) is then a good, accurate and straightforward-to-
interpret, form for spectra at low momentum transfers. This
will be useful for fitting and understanding liquid spectra, and
results of molecular dynamics simulations, and as a starting
point for investigating more complex effects. In the present
work we also show that the main cross-over from hydro-
dynamic long-wavelength behavior to the high frequency
behavior in ambient water occurs at small momentum
transfers, Q < 2 nm−1, and that a viscoelastic modification
of the Landau–Placzek relation accounting for fast sound
reasonably gives the intensity ratio of the quasi-elastic and
acoustic parts of the response, suggesting the quasi-elastic
mode observed in IXS in this range may be predominantly
due to the relaxation causing fast sound.
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Section S1: Experimental Conditions and Data Treatment 

For IXS measurements the water cell was mounted in a vacuum chamber with a cleanup 

pinhole (0.3 mm diameter) at 25.7 keV (Si (13 13 13))  and a cleanup slit (0.3 x 2mm2) at 21.7 keV 

(Si (11 11 11)), placed just upstream of the cell (in vacuum) to reduce backgrounds.  The samples 

used were 5 mm thick at 25.7 keV, and 2 mm at 21.7 keV.   With the pinhole in place, and a Soller 

slit on the outgoing beam path 1), empty cell backgrounds were always much smaller than the signal, 

and in fact were negligible for higher Q.   The temperature at the sample was not actively controlled 

but the hutch temperature, as monitored near the sample position, was measured to be an average of 

27.4 C with a diurnal variation of < 0.5C from the average.  Momentum transfers are expected to be 

accurate to better than 0.02 nm-1 and the momentum resolution was flat topped with a width <20% of 

the momentum transfer, and typically closer to 10%.   

In order to compare our measured result to the various models of we took the 

classical model function for  given by eqn. 1, scaled it by a detailed balance factor 

( , ) and convolved the result with the energy resolution for the 

relevant analyzer/mask combination.  That resolution was determined in the conditions used in the 

experiment by measuring scattering from plexiglass near its structure factor maximum and then 

removing the small phonon contribution to the plexiglass as described in 2).  As the masks were 

tailored to provide good resolution, momentum acceptances were near top-hat distributions (see 1)).  

For completeness, fits were done both with and without averaging  over the relevant range 

of momentum transfers, but this had small impact on the results – and the data presented includes the 

averaging.  The parameters of the model function were optimized by minimizing chi-squared with 

                                                
* baron@spring8.or.jp 
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respect to the (background subtracted, when necessary) data using code based on the MINUIT 

package 3) first using the MIGRAD routine and then MINOS to find the final minimum.  Throughout 

this paper, error bars represent 1-sigma deviations on counting statistics propagated, when needed, 

according to standard methods. 

 

Section S2: Goodness of Fit 

Figure S1 shows the goodness of fit parameter,  , where  is the number of degrees of 

freedom,  for the best fits for several models.  The interacting model uniformly gives a significantly 

improved value of this goodness of fit parameter compared to an L+DHO model, and, in most cases 

gives a comparable or better fit than even the L+2DHO model, with  sometimes, the L+2DHO being 

significantly worse.   This can be emphasized by plotting the probability, p, of have  larger than 

the observed value (see, e.g., discussion in 4)) as may be calculated using an incomplete gamma 

function 5): the interacting model usually gives fits with p>10%, while the L+DHO model often has 

p<<1% and even occasionally p<10-4.   The L+2DHO, which doubles the number of phonon lines 

available, so is a major increase in fitting freedom compared to the interacting or L+DHO models, 

does better than the L+DHO model, but usually not as well as the single-phonon line interacting 

model (eqn. 1), and, occasionally, the L+2HO is in fact significantly worse than the interacting model. 

χ 2 ν ν

χ 2 ν

Figure S1.  Goodness of fit for several models.  The top plot shows the chi-squared, ,  per degree of freedom,  
, while the lower plot shows the probability of getting that value or larger for a data set assuming the measured 

data points have normally distributed random errors.  See discussion in text.  Note that some p values for the 
L+DHO fits are below 10-7 and do not appear in the lower plot. 
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Section S3: Acoustic Mode Energy: ,  ,  

There have been different choices made as to what parameter is used to discuss the acoustic mode 

energy in liquids, with some work choosing  (including much of the referenced work on water), 

other work focusing on ,  and still other work choosing the peak, , of the 

longitudinal current-current correlation function, .  The last is convenient 

as it can be determined directly from the shape of , and, in principle, is independent of the 

choice of the model for .   We prefer  because (1) in the limit where the quasi-elastic mode 

is weak or  narrow ( or ) then   and (2) if the quasi-elastic mode is strong or 

broad, or if one does make more complicated models with possible additional modes, it seems 

reasonable to discuss the acoustic mode energy as a parameter that is not affected by tails of the other 

modes.  For completeness, we note that for the interacting model, one has  

   (SM1) 

and we plot the various mode energies in figure S2.  As suggested, .  
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Figure S2.  Different possible choices for acoustic mode energies as discussed in the text. 
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Section S4: Conversion of Parameters 

For convenience and completeness we give relations between the parameters of  equation 5.3.15 of 6) 

and equation 1 of the main text: 

        (SM2a) 

   (SM2b) 

    (SM2c) 

        (SM2d) 

       (SM2e) 

 

Where k is used in 6) instead of ,  is the thermal diffusivity, is the longitudinal viscosity and 

 is the acoustic mode width.  It is perhaps worth noting that while equation 1 can be negative if  

is small compared to  and  is small compared to , the parametrization above prevents this, as, 

when  becomes large, becomes large compared to (eqn. SM2b):  the hydrodynamic 

formulation does not allow for an acoustic mode that is simultaneously weak and narrow compared 

to the central line, as is consistent with all spectra observed in our experience. 
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